REACTION OF 1,3-DIPHENYL-TRIAZENE WITH TRIPHENYL-PHOSPHINE IN THE PRESENCE OF PERCHLORIC ACID: A SOURCE OF ARYL RADICALS

by Giorgio De Luca^X, Carlo Panattoni, Gabriele Renzi and Luigi Toniolo

Istituto Chimico - Via S. Agostino, 1 - 62032 CAMERINO (Italy)

(Received in WK 3 April 1974; accepted for publication 6 June 1974)

It has been shown that diaryltriazenes can react homolytically under several experimental conditions $^{1-4}$. In this note we wish to report that 1,3-diphenyltriazene reacts at r.t. with PPh₃ in a number of aromatic solvents, in the presence of perchloric acid (72%), to give, among other products, an isomeric mixture of biaryls whose analysis unequivocally supports free radical aromatic substitution.

In a typical experiment a solution 2×10^{-3} M of 1,3-diphenyltriazene (I) and HClO₄ 72% (1 : 1 ratio) in monosubstituted benzenes (Table) was added to an equimolar amount of PPh₃, dissolved in the same solvents, at r.t. and under vigorous stirring. At the time evolution of nitrogen ceased (5hr.), a voluminous precipitate formed which was identified as N-aryl-hydrazino-triphenylphosphonium perchlorate (II) (30-35% yield)⁵, (Calcd: N = 6.18; Found: N = 6.24); I.r.: $_{V}$ (N-H) at 3100 cm⁻¹ (broad) and a broad band at 1100 - 1000 cm⁻¹ for (ClO₄); moreover (II) hydrolises quantitatively in EtOH to (C₆H₅)₃P=0 and C₆H₅NH-NH₂. The crude filtrate, analyzed by GLC, showed a mixture of ortho-, meta-, para-diphenyl isomers (0.2 gr.; 10%) (Table) together with PPh₃P=0 (10%) and a small amount of unidentified products. The yield of biaryls increased in a nitrogen atmosphere (12-14%) suggesting a homolytic mechanism in which oxygen acts as a radical scavenger⁶. Carrying out the reaction in homogeneous phase (DMSO/aromatic solvent), the yield increased to 17-19%.

This reaction may be rationalized as follows:

$$(I) \xrightarrow{HX} C_{6}^{H} \xrightarrow{P_{1}} C_{6}^{H} \xrightarrow{P_{1}} C_{6}^{H} \xrightarrow{P_{1}} C_{6}^{H} \xrightarrow{P_{2}} C$$

Intermediate (IV) may decompose either \underline{via} A to aryl-radicals and a triphenylphosphonium cation radical (V) or via B to (II) and triphenyl-phosphine oxide

$$\xrightarrow{A} C_{6}^{H} \cdot + \xrightarrow{+} PPh_{3}^{V} + N_{2}$$

$$\xrightarrow{B} (C_{6}^{H} \cdot NH - NH - PPh_{3}^{V}) \times - + C = PPh_{3}^{V}$$

$$(II) (30 - 35\%) (10\%)$$

(IV)

The aryl radical generated <u>via</u> A would give a homolytical aromatic substitution in monosubstituted benzenes to afford ($\underline{o},\underline{m},\underline{p}$) isomeric biphenyls. Free radical phenylation is also evidenced by the formation of bicumyl when the reaction was carried out in cumene.

TABLE								
	Chlorobenzene					Anisole		
	ĸ _r	<u>%o</u> -	%m-	% 2-	к _т	<u>%o</u> -	% <u>m</u> -	% <u>p</u> -
Bz ₂ 0 ⁷ 2	1.40	50.0	32.0	18.0	2.00	70.0	17.0	16.0
dpt + HClO ₄ + PPh ₃	1.24	51.2	30.6	18.2	1.85	69.4	15.1	15.5
$PhN_2^+BF_4^- + PPh_3$	1.20	49.8	29.6	20.6	1.90	68.2	16.0	15.8
dpt = diphenyltriazene ; K_{T} = total rate ratio.								

As further evidence of the mechanism benzenediazonium tetrafluoborate and triphenylphosphine were allowed to react (in the ratio 1:1) in an aromatic medium yielding the same results (see Table).

It is noteworthy that aryl-diradical intermediates were suggested in homogeneous and heterogeneous phases in an aromatic medium^{8,9}. On the other hand the aryl cation is considered to be the intermediate in aprotic polar solvents¹⁰. It has been also reported that aryl diazonium salts undergo homolytic decomposition in solution in DMSO of sodium nitrite¹¹ and $CH_{3}OH^{12}$. It is therefore important that the presence of aryl radicals has been unambiguously demonstrated in a reaction, like ours, that proceeds at room temperature in a heterogeneous medium.

References:

- 1) J.ELKS and D.H.HEY, J. Chem. Soc., 441 (1943).
- 2) R.D.HARDIE and R.H.THOMSON, J. Chem. Soc., 1286 (1958).
- 3) C.S.RONDESTVEDT and H.S.BLANCHARD, J. Am. Chem. Soc., 77, 1769 (955).
- 4) C.M.CAMAGGI, M.TIECCO and A.TUNDO, J. Chem. Soc., (B) 680 (968).
- 5) Yields calculated on isolated pure product.
- 6) R.ITO, T.MIGITA and O.SIMAMURA, Abs. 16th Ann. Meeting Chem. Soc. Japan; 223 (1963).
- 7) G.H.WILLIAMS "Homolytic aromatic substitution" Per. Press, Oxford 960, p. 73.
- 8) R.A.ABRAMOVITCH and G.J.SAHA, Can. J. Chem., 43, 3269 (1965).
- 9) R.A.ABRAMOVITICH and F.F.GADALLAH, J. Chem. Soc., (B), 497 (1968).
- 10) K.ISHIDA, N.KOBORI, M.KOBAYASHI and H.MINATO, Bull. Chem. Soc. Japan, 43, 285 (1970).
- 11) M.KOBAYASHI, H.MINATO, N.KOBORI and E.YAMADA, Bull. Chem. Soc. Japan, 43, 1131 (1970).
- 12) D.F.DE TAR and M.N.TUBRETZKY, J. Am. Chem. Soc., 77, 1745 (1955);

Ibidem, 78, 3925 (1956).